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Abstract

We report that two-coupled discrete modified Korteweg–de Vries equations
(2-dmKdV) governed by nonlinear partial differential–difference equations are
completely integrable. We derive Lax matrices for 2-dmKdV and also show
that it admits a sequence of generalized (non-point) symmetries and polynomial
conserved densities establishing its complete integrability. Also exact solutions
of it expressible in terms of Hyperbolic and Jacobian elliptic functions have
been derived.

PACS number: 02.30jK

1. Introduction

The study of discrete nonlinear systems governed by both ordinary and partial differential–
difference (including lattice equations) and pure difference equations has drawn much attention
in recent years particularly from the point of complete integrability [1–15]. Several analytical
techniques have been devised to determine whether or not the given nonlinear differential–
difference equation is completely integrable. Among them the continuous transformation
group theory and Lax pair technique developed, respectively, by Sophus Lie and Lax play
a significant role [16–19]. Given a nonlinear evolution equation possessing mathematical
structures, both algebraic and analytic related with its integrability, how to find its discrete
analogue preserving integrability structures is one of the current topics of researchers in non-
linear equations. As a result of the concerted efforts of the several research groups, a discrete
analogue of different nonlinear partial differential equations including Korteweg–de Vries,
modified Korteweg–de Vries, nonlinear Schrödinger equation, etc has been derived preserving
the integrability properties of their continuous counter parts [2, 3, 20–24]. Recently, a similar
effort to derive the discrete analogue of coupled nonlinear partial differential equations with
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(1+1) dimensions possessing solitons has been extended [25–27]. For example, Ablowitz et
al [25] have considered a system of N-coupled nonlinear Schrödinger equations

i
∂

∂t
χk = ck

∂2

∂x2
χk + 2αkk|χk|2χk + 2

N∑
l=1

αkl|χl|2χk,

l �= k, αkl = αlk, k, l = 1, 2, . . . , N (1)

and derived a discrete analogue

i
d

dt
q(j)

n = (
q

(j)

n+1 + q
(j)

n−1 − 2q(j)
n

)
+

N∑
k=1

∣∣q(j)
n

∣∣2(
q

(j)

n+1 + q
(j)

n−1

)
, j = 1, 2, . . . , N (2)

which preserves integrability properties of its continuous counter part. In this paper, we show
that the 2-coupled discrete modified Korteweg–de Vries equation (2-dmKdV), namely

∂an

∂t
= (

1 + a2
n + b2

n

)
(an+1 − an−1), an−1 = a(n − 1, t), an = a(n, t), etc, (3a)

∂bn

∂t
= (

1 + a2
n + b2

n

)
(bn+1 − bn−1) (3b)

which can be viewed as a discrete version of the 2-coupled modified Korteweg–de Vries
equation [28],

u1τ + 6
(
u2

1 + u2
2

)
u1x + u1xxx = 0, (4a)

u2τ + 6
(
u2

1 + u2
2

)
u2x + u2xxx = 0, (4b)

is completely integrable. It is appropriate to mention here that Tsuchida and Wadati [29] have
shown that the above 2-coupled modified Korteweg–de Vries equations is solvable by the
inverse scattering transform technique and has multi-soliton solutions while Sahadevan and
Kannagi [30] have shown that it admits infinitely many generalized symmetries, polynomial
conservation laws and a recursion operator establishing its integrability.

We wish to mention that equation (4) can be achieved from equation (3) through the
following limiting procedure:

an = δu1
(
(n + 2t)δ, 1

3δ3t
)

+ O(δ2),

≡ δu1(x, τ ) + O(δ2),

bn = δu2
(
(n + 2t)δ, 1

3δ3t
)

+ O(δ2),

≡ δu2(x, τ ) + O(δ2),

an±1 = δu1(x ± δ, τ ) + O(δ2),

bn±1 = δu2(x ± δ, τ ) + O(δ2).

Substituting the above into equation (3), we obtain the 2-coupled modified Korteweg–de Vries
equation, (

u1τ + 6
(
u2

1 + u2
2

)
u1x + u1xxx

)
δ4 + O(δ5) = 0, (5a)(

u2τ + 6
(
u2

1 + u2
2

)
u2x + u2xxx

)
δ4 + O(δ5) = 0. (5b)

This paper is organized as follows. In section 2, we show that 2-dmKdV admits a Lax
representation, indicating that it is integrable in the sense of Lax. In section 3, we show
explicitly that the 2-dmKdV possesses a sequence of generalized symmetries and polynomial
conserved densities. In section 4, we derive some exact solutions of 2-dmKdV expressible in
terms of Hyperbolic and Jacobian elliptic functions. In section 5, we give a summary of our
results.
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2. Lax representation

An autonomous nonlinear partial differential–difference equation (PD�E) with two
independent variables (one discrete and the other continuous) is an equation of form

∂un

∂t
= F(. . . , un−1, un, un+1, . . .), (6)

where un and F are the vector-valued functions. The Lax representation of a scalar PD�E,

that is for
∂

∂t
a(n, t) = F(a(n − 1, t), a(n, t), a(n + 1, t)) or

∂an

∂t
= F(an−1, an, an+1),

can be constructed in the following manner. Consider a linear system

Φn+1(t, λ) = Ln(t, λ)Φn(t, λ),
d

dt
Φn(t, λ) = Mn(t, λ)Φn(t, λ) (7)

or equivalently,[
φ1n+1(t, λ)

φ2n+1(t, λ)

]
=

[
L11n(t, λ) L12n(t, λ)

L21n(t, λ) L22n(t, λ)

] [
φ1n(t, λ)

φ2n(t, λ)

]
,[

d
dt

φ1n(t, λ)

d
dt

φ2n(t, λ)

]
=

[
M11n(t, λ) M12n(t, λ)

M21n(t, λ) M22n(t, λ)

] [
φ1n(t, λ)

φ2n(t, λ)

]
,

where λ is the spectral parameter and Lijn(t, λ) and Mijn(t, λ) are the functions of an and its
shifts. The compatibility condition of the linear system (7) gives

d

dt
Ln + LnMn − Mn+1Ln = 0. (8)

It is straightforward to derive the Lax matrices for the scalar dmKdV

∂an

∂t
= (

1 + a2
n

)
(an+1 − an−1)

satisfying equation (8). The explicit form of Lax matrices is

Ln =
[

λ an

−an 1/λ

]
, Mn =

[
λ2 + anan−1 anλ + an−1

λ

−an−1λ − an

λ
1
λ2 + anan−1

]
.

For a 2-coupled PD�E with two independent variables (one discrete and the other continuous),
that is for

∂an

∂t
= F1(an−1, bn−1, an, bn, an+1, bn+1),

∂bn

∂t
= F2(an−1, bn−1, an, bn, an+1, bn+1),

the associated linear equations read

Φn+1(t, λ) = Ln(t, λ)Φn(t, λ),
d

dt
Φn(t, λ) = Mn(t, λ)Φn(t, λ),

where Φn(t, λ) = (φ1n(t, λ), φ2n(t, λ), φ3n(t, λ), φ4n(t, λ))T , Ln(t, λ) and Mn(t, λ) are 4×4
matrices with entries, Lijn(t, λ) and Mijn(t, λ) are the functions of an, bn and their shifts. The
explicit form of the Lax matrices Ln(t, λ) and Mn(t, λ) can be derived by extending a well-
known procedure devised by Ablowitz, Kaup, Newell and Segur (AKNS) for nonlinear partial
differential equations [19]. More precisely, for a given suitable matrix Ln(t, λ), the matrix
Mn(t, λ) can be derived by expanding its entries as a polynomial in the spectral parameter λ

or 1
λ

satisfying the Lax equation (8).
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To derive the Lax matrices for 2-dmKdV we first fix the entries of matrix Ln(t, λ) as

Ln(t, λ) =

⎡
⎢⎢⎢⎣

λ 0 an bn

0 λ bn −an

−an −bn
1
λ

0

−bn an 0 1
λ

⎤
⎥⎥⎥⎦

and then expand each entry of the matrix Mn(t, λ) as a polynomial in
(

1
λ

)l
, l = −2,−1, 0, 1, 2.

Proceeding further along with the matrix Ln(t, λ), we find that the compatibility condition
given in equation (8) satisfied for the matrices

Mn(t, λ) =

⎡
⎢⎢⎣

M11 M12 M13 M14

−M12 M11 M14 −M13

M31 −M32 M33 M34

−M32 M31 −M34 M33

⎤
⎥⎥⎦ ,

where

M11 = λ2 + anan−1 + bnbn−1, M12 = anbn−1 − bnan−1,

M13 = anλ +
an−1

λ
, M14 = bnλ +

bn−1

λ
,

M31 = an−1λ +
an

λ
, M32 = bn−1λ +

bn

λ

M33 = 1

λ2
+ anan−1 + bnbn−1, M34 = anbn−1 − bnan−1.

Thus, we infer that the 2-dmKdV system (3) is integrable in the sense of Lax.

3. Generalized symmetries and polynomial conserved densities

3.1. Generalized symmetries

It is easy to check that 2-dmKdV given in equation (3) is not invariant under scaling symmetry.
By introducing an auxiliary parameter K we find that the 2-dmKdV given by

∂an

∂t
= (

K + a2
n + b2

n

)
(an+1 − an−1), (9a)

∂bn

∂t
= (

K + a2
n + b2

n

)
(bn+1 − bn−1) (9b)

is invariant under scaling (dilation) symmetry

(t, an, bn,K) → (
λ−1t, λ

1
2 an, λ

1
2 bn, λK

)
, (10)

where λ is an arbitrary parameter. Let us assume that equation (9) is invariant under a
one-parameter (ε) continuous non-point transformations

n∗ = n, t∗ = t, a∗
n = an + εG

(1)
i (n) + O(ε2),

b∗
n = bn + εG

(2)
i (n) + O(ε2), i = 1, 2, . . . , (11)

where

G
(1)
i (n) = G

(1)
i (. . . , bn−1, an−1, an, bn, an+1, bn+1, . . .),

G
(2)
i (n) = G

(2)
i (. . . , bn−1, an−1, an, bn, an+1, bn+1, . . .)

4
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provided that an and bn satisfy equation (9). For clarity, we denote Gi (n) = (G
(1)
i (n),G

(2)
i (n))T

and the subscript i represents the ith order non-point or generalized symmetry. Consequently,
we obtain the following invariant equations:

∂G
(1)
i (n)

∂t
= (

2anG
(1)
i (n) + 2bnG

(2)
i (n)

)
[an+1 − an−1]

+
(
G

(1)
i (n + 1) − G

(1)
i (n − 1)

)[
K + a2

n + b2
n

]
, (12a)

∂G
(2)
i (n)

∂t
= (

2anG
(1)
i (n) + 2bnG

(2)
i (n)

)
[bn+1 − bn−1]

+
(
G

(2)
i (n + 1) − G

(2)
i (n − 1)

)[
K + a2

n + b2
n

]
. (12b)

The invariant equations (12a) and (12b) can be solved for the generalized symmetry
Gi (n) = (

G
(1)
i (n),G

(2)
i (n)

)T
in more than one way [18, 31–34, 37]. We show below

how to derive the generalized symmetries of equation (9) through an algorithmic procedure
developed by Hereman and his collaborators [32]. Basically, the Hereman’s algorithmic
procedure is based on the concept of weights and ranks. To start with, we briefly explain
the concept of weights and ranks. The weight, w, of a variable is defined as the exponent
in the scaling parameter λ which multiplies the variable. Weights of the dependent variables
are non-negative, rational and independent of n. Similarly, the rank of a monomial is defined
as the total weight of the monomial. An expression is said to be uniform in rank if all
its terms have the same rank. We wish to mention that Hereman and his collaborators
have developed a Mathematica software (known as InvariantsSymmetries.m) to derive
(i) generalized symmetries, (ii) conserved densities for partial differential equations and
differential–difference equations. In this paper, we have computed the generalized symmetries
and conserved densities manually.

We set w
(

d
dt

) = 1. From equation (9) we see

w

(
d

dt

)
+ w(an) = w(K) + w(an) = 3w(an) = w(an) + 2w(bn),

w

(
d

dt

)
+ w(bn) = w(K) + w(bn) = 3w(bn) = 2w(an) + w(bn)

and so

w(an) = 1
2 , w(bn) = 1

2 , w(K) = 1

and hence (9a) and (9b) are of the same rank 3
2 . Hereafter, we use the more compact notation

an = a, bn = b, an−1 = a, bn−1 = b, an−2 = a, bn−2 = b, an−3 = a,

bn−3 = b, an+1 = a, bn+1 = b, an+2 = a, bn+2 = b, an+3 = a, bn+3 = b, . . . .

From equation (12) we see that

G2(n) =
(

G
(1)
2 (n)

G
(2)
2 (n)

)
=

(
(K + a2 + b2)(a − a)

(K + a2 + b2)(b − b)

)
(13)

is a trivial generalized symmetry with rank
(

3
2 , 3

2

)
, and therefore the next non-trivial generalized

symmetry G3(n) = (G
(1)
3 (n)

G
(2)
3 (n)

)
must have rank

(
5
2 , 5

2

)
. With this in mind, we first form a monomial

in an and bn of rank
(

5
2 , 5

2

)
that leads to a set:

L = {a, b, a2, ab, b2, a3, a2b, ab2, b3, a4, a3b, a2b2, ab3, b4, a5, a4b, a3b2, a2b3, ab4, b5,

Ka,Kb,Ka2,Kab,Kb2,Ka3,Ka2b,Kab2,Kb3,K2a,K2b}.
5
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Then the necessary partial derivatives with respect to t in each monomial of L along with
equation (9) give the following:

d0

dt0
(a5) = a5,

d0

dt0
(a4b) = a4b,

d0

dt0
(a3b2) = a3b2,

d0

dt0
(a2b3) = a2b3,

d0

dt0
(ab4) = ab4,

d0

dt0
(b5) = b5,

d

dt
(a3) = 3a2ȧ = 3a2(K + a2 + b2)(a − a)

= 3Ka2a − 3Ka2a + 3a4a − 3a4a + 3a2b2a − 3a2b2a, etc,

and a set

M = {K2a,K2a,K2a,K2a,K2a,K2b,K2b,K2b,K2b,K2b,Ka3,Kb3,Ka2b,

Kab2,Ka2a,Ka2a,Ka2a,Ka2a,Ka2b,Ka2b,Ka2b,Ka2b,Kaa2,

Kaa2,Kab
2
,Kab2,Kab2,Kab2,Kab2,Kab2,Kb2b,Kb2b,Kb2b,Kb2b,

Ka2b,Ka2b,Kbb
2
,Kbb2,Ka2a,Ka b

2
,Ka2b,Kb

2
b,Ka2b,Ka b2,Ka2a,

Kb2b,Ka2b−2
,Kaab,Kaab,Kabb,Kabb,Kaaa,Kbbb,Kaab,Kaab,

Kaab,Kaa b,Kabb,Kabb,Kabb,Kabb, a5, b5, a4b, a3b2, a2b3, ab4, a4a,

a4a, a4b, a4b, a3ab, a3ab, a3bb, a3bb, ab4, ab4, b4b, b4b, a2ab2, a2ab2, a2b2b,

a2b2b, aab3, aab3, ab3b, ab3b, a3a2, a3a2, a3b
2
, a3b2, a3aa, a3ab, a3ab,

a3a b, a3a b, a2b3, b3b
2
, a2b3, b3b2, b3bb, ab3b, ab3b, ab3b, ab3b, a2a2b, a2bb

2
,

a2a2b, a2bb2, a2bbb, a2abb, a2abb, a2abb, a2abb, aa2b2, aa2b2, ab2b
2
,

ab2b2, aaab2, aab2b, aab2b, aab2b, aab2b, b2b2b, a2b2b, a2a2b, ab2b2, a2a2a,

b2b
2
b, ab2b

2
, a2ab2, a2ab2, a2a2b, a2b

2
b, a2a b2, a2b2b, a2a2a, a2a b

2
, a2b2b}.

Thus, the most general form of the non-trivial generalized symmetry G3(n) =(
G

(1)
3 (n),G

(2)
3 (n)

)T
is a linear combination of the elements in the set M. Substituting the

linear combination for G
(1)
3 (n) and G

(2)
3 (n) in equations (12a) and (12b) along with 2-dmKdV,

we find that it satisfies identically for the following forms:

G
(1)
3 = (K + a2 + b2)[(K + a2 + b

2
)a − (K + a2 + b2)a

+ (a2 − a2 − b
2

+ b2)a + 2b(a − a)(b + b)], (14a)

G
(2)
3 = (K + a2 + b2)[(K + a2 + b

2
)b − (K + a2 + b2)b

+ (b
2 − b2 − a2 + a2)a + 2a(a + a)(b − b)]. (14b)

Note that when K = 1, we obtain the generalized symmetries of 2-dmKdV, equation (3).
Proceeding as above, we obtain the next order non-trivial generalized symmetry G4(n) =(
G

(1)
4 (n),G

(2)
4 (n)

)T
with rank

(
7
2 , 7

2

)
. The explicit forms of G

(1)
4 (n) and G

(2)
4 (n) with K = 1

are:

G
(1)
4 = (1 + a2 + b2)[(1 + a2 + b

2
)((1 + a

2
+ b

2
)a + a a

2
+ 2a(aa + bb + bb + b b)

− ab
2 − 2b(ab + a b − a b)) − (1 + a2 + b2)((1 + a2 + b2)a + a a2 − a b2

6
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+ 2a(aa + bb + bb + b b) − 2b(ab + a b − a b)) + (a2 − b2)(a3 − 3ab
2

+ 3a b2 − a3) + (1 + a2 + 3 b2)(a2a + 2abb − aa2 + ab2 − ab
2 − 2abb)

+ 2a b(a2b − a2b + b3 − b
3

+ bb2 − b
2
b + 3a2b − 3a2b + 2aa b − 2aab)],

G
(2)
4 = (1 + a2 + b2)[(1 + a2 + b

2
)((1 + a

2
+ b

2
)b + b b

2
+ 2b(aa + aa + a a + bb)

− a
2
b − 2a(ab + a b − ab)) − (1 + a2 + b2)((1 + a2 + b2)b + b b2 − a2b

+ 2b(aa + aa + a a + bb) − 2a(a b + ab − ab)) + (a2 − b2)(b
3 − 3a2b

+ 3a2b − b3) + (1 + 3 a2 + b2)(b
2
b + 2aab − bb2 + a2b − a2b − 2aa b)

+ 2a b(ab
2 − ab2 + a3 − a3 + aa2 − a2a + 3ab

2 − 3a b2 + 2abb − 2abb)].

In a similar manner, one can derive a sequence of next higher order generalized symmetries
{Gi (n)} = {(

G
(1)
i (n),G

(2)
i (n)

)T }
with rank

(
2i−1

2 , 2i−1
2

)
, i = 5, 6, . . .. We have checked that

the obtained sequences of generalized symmetries {Gi (n)} also satisfy the following relation:

[Gi (n), Gj (n)] = Gi (n)′[Gj (n)] − Gj (n)′[Gi (n)] = 0 ∀ i, j,

where Gi (n)′[Gj (n)] is the Fréchet derivative of Gi (n) in the direction of Gj (n). Thus, the
obtained sequences of generalized symmetries commute each other.

3.2. Polynomial conserved densities and fluxes

A scalar function ρn(un) is a conserved density of (6) if there exists a scalar function Jn(un)

called the associated flux, such that

∂ρn

∂t
+ �Jn = 0 (15)

is satisfied on the solutions of (6). Here �Jn = (E − I )Jn = Jn+1 − Jn. To derive conserved
densities with different ranks, we use the algorithmic procedure (homotopy operator) of
Hereman and his collaborators [35, 36]. For rank 2 as usual we form monomials of a and
b which give the list L1 = {a, b, a2, ab, b2, a3, a2b, ab2, b3, a4, a3b, a2b2, ab3, b4,Ka,Kb,

Ka2,Kab,Kb2}. Introducing the necessary t derivatives in each monomial of L1 leads to a
set

M1 = {a4, a3b, a2b2, ab3, b4,Ka2,Kab,Kb2,Kaa,Kbb,Kab,Kab, a3a, a3a, a3b,

a3b, ab3, ab3, b3b, b3b, a2ab, a2ab, a2bb, a2bb, aab2, aab2, ab2b, ab2b}.
Thus the most general form of the conserved density of rank 2 will be

ρ(2)
n = c1a

4 + c2a
3b + c3a

2b2 + c4ab3 + c5b
4 + c6Ka2 + c7Kab + c8Kb2

+ c9Kaa + c10Kbb + c11Kab + c12Kab + c13a
3a + c14a

3a + c15a
3b

+ c16a
3b + c17ab3 + c18ab3 + c19b

3b + c20b
3b + c21a

2ab + c22a
2ab

+ c23a
2bb + c24a

2bb + c25aab2 + c26aab2 + c27ab2b + c28ab2b,

where ci, i = 1, 2, . . . , 28 are constants to be determined. Using the above along with (3) in
(15) we obtain the conserved density ρ(2)

n with rank 2

ρ(2)
n = Kaa + Kbb (16)

and the associated fluxes J (2)
n as

J (2)
n = K3 − K(K + a2 + b2)(K + aa + bb). (17)

7
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Proceeding as above, here again, we obtain the conserved density ρ(3)
n with rank 3

ρ(3)
n = 1

2Ka2a2 + K2aa + Kaa2a + 1
2Kb2b

2
+ K2bb + Kbb

2
b

− 1
2Ka2b2 − 1

2Ka2b
2

+ Kaa b
2

+ Ka2bb + 2Kaabb (18)

and the associated fluxes J (3)
n as

J (3)
n = a(K + a2 + b2)(Kab

2 − K2a − Ka2a − 2Kabb)

+ b(K + a2 + b2)(Ka2b − K2b − Kb
2
b − 2Kaab)

− (K + a2 + b2)(K2aa + K2bb + Kaa2a + Kbb
2
b + Ka a b

2
+ Ka2bb). (19)

In a similar manner, one can generate a sequence of higher order conserved densities
ρ(k)

n , k = 4, 5, . . . with rank 4, 5, . . . along with the fluxes which involves lengthy expressions
and so the details are omitted here.

4. Some exact solutions of 2-dmKdV

It is known that the scalar dmKdV
∂an

∂t
= (

1 + a2
n

)
(an+1 − an−1)

admits an exact solution having the form

a(n, t) = i tanh(k) tanh(kn + 2 tanh(k)t),

where k is an arbitrary constant. In this section, we show that 2-dmKdV also admits an exact
solution expressible in terms of hyperbolic and Jacobian elliptic functions. Let us assume that
2-dmKdV admits an exact solution of form

a(n, t) = A1 + A2 tanh(kn + ωt), b(n, t) = B1 + B2 tanh(kn + ωt) (20)

with k being the wave number, ω being the angular frequency and A1, A2, B1 and B2 being the
constants to be determined. Substituting (20) into 2-dmKdV and then equating the coefficients
of tanhl (kn + ωt), l = 0, 1, 2 to zero, we obtain the following equations:

A1A2 + B1B2 = 0,

ω tanh(k) + 2A2
2 + 2B2

2 = 0,

−ω + 2 tanh(k) + 2 tanh(k)A2
1 + 2 tanh(k)B2

1 = 0.

Solving the above equations consistently we find

A1 = −iB2

√(
A2

2 + B2
2 + tanh2(k)

)
(
A2

2 + B2
2

)
tanh2(k)

, B1 = iA2

√(
A2

2 + B2
2 + tanh2(k)

)
(
A2

2 + B2
2

)
tanh2(k)

,

ω = −2
(
A2

2 + B2
2

)
tanh(k)

and so

a(n, t) = −iB2

√(
A2

2 + B2
2 + tanh2(k)

)
(
A2

2 + B2
2

)
tanh2(k)

+ A2 tanh(kn + ωt), (21a)

b(n, t) = iA2

√(
A2

2 + B2
2 + tanh2(k)

)
(
A2

2 + B2
2

)
tanh2(k)

+ B2 tanh(kn + ωt). (21b)

8
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Proceeding in a similar manner, we find that 2-dmKdV admits an exact solution expressible
in terms of Jacobian elliptic functions. They are

an = −iB2

√
A2

2 + B2
2 + m2(sn(k,m))2(

A2
2 + B2

2

)
m2(sn(k,m))2

+ A2sn(kn + ωt,m), (22a)

bn = iA2

√
A2

2 + B2
2 + m2(sn(k,m))2(

A2
2 + B2

2

)
m2(sn(k,m))2

+ B2sn(kn + ωt,m), (22b)

where ω = − 2(A2
2+B2

2 )

m2sn(k,m)
and m �= 0. Note that 2-dmKdV admits another solution given by

an = −iB2

√
1 − m2sn(k,m)2 − cn(k,m)2

(
1 − A2

2 − B2
2

)
(
A2

2 + B2
2

)
(1 − m2sn(k,m)2 − cn(k,m)2)

+ A2
sn(kn + ωt,m)

cn(kn + ωt,m)
, (23a)

bn = iA2

√
1 − m2sn(k,m)2 − cn(k,m)2

(
1 − A2

2 − B2
2

)
(
A2

2 + B2
2

)
(1 − m2sn(k,m)2 − cn(k,m)2)

+ B2
sn(kn + ωt,m)

cn(kn + ωt,m)
, (23b)

where ω = − 2(A2
2+B2

2 )cn(k,m)sn(k,m)

1−m2sn(k,m)2−cn(k,m)2 and m �= 1.

5. Summary

In this paper, we have shown that the 2-coupled discrete modified Korteweg–de Vries equation
(2-dmKdV) governed by nonlinear partial differential–difference equations is completely
integrable. We have derived Lax matrices for 2-dmKdV and also shown explicitly that it
admits a sequence of generalized (non-point) symmetries and polynomial conserved densities.
Also exact solutions of it expressible in terms of Hyperbolic and Jacobian elliptic functions
have been derived.

The above analysis indicates that the N-coupled discrete equation (N-dmKdV),

∂ai(n)

∂t
=

⎛
⎝1 +

N∑
j=1

a2
j (n)

⎞
⎠ (ai(n+1) − ai(n−1)), i = 1, 2, . . . , N, (24)

can be viewed as a discrete analogue of the N-coupled modified Korteweg–de Vries equation

uiτ + 6

⎛
⎝ N∑

j=1

u2
j

⎞
⎠ uix + uixxx, i = 1, 2, . . . , N. (25)

It is straightforward to check that the coupled N-dmKdV given in equation (24) admits
a sequence of commutable generalized symmetries. For example, the trivial generalized
symmetry with rank 3

2 is

G
(i)
2 (n) =

⎛
⎝1 +

N∑
j=1

a2
j (n)

⎞
⎠ (ai(n+1) − ai(n−1)), i = 1, 2, . . . , N,

and the next non-trivial generalized symmetry with rank 5
2 can be computed whose explicit

form is

9
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G
(i)
3 (n) =

⎛
⎝1 +

N∑
j=1

a2
j (n)

⎞
⎠

⎡
⎣

⎛
⎝1 +

N∑
j=1

a2
j (n+1)

⎞
⎠ ai(n+2) −

⎛
⎝1 +

N∑
j=1

a2
j (n−1)

⎞
⎠ ai(n−2)

+

⎛
⎝a2

i(n+1) − a2
i(n−1) −

N∑
j=1

(
a2

j (n+1) − a2
j (n−1)

)⎞⎠ ai(n)

+ 2
(
a2

j (n+1) − a2
j (n−1)

)⎛
⎝ N∑

j=1

aj(n) aj (n+1)

⎞
⎠ , i = 1, 2, . . . , N.

In a similar manner, one can derive a sequence of next order generalized symmetries. Also one
can show that the coupled N-dmKdV admits a sequence of polynomial conserved densities.
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